博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
WebDNN:浏览器上运行的最快DNN执行框架(Macbook也行)
阅读量:6507 次
发布时间:2019-06-24

本文共 2236 字,大约阅读时间需要 7 分钟。

本文来自AI新媒体量子位(QbitAI)

深度神经网络(DNN)已经被证明在图像识别、视频识别、自然语言处理、游戏人工智能等诸多不同领域都具有非常大的潜力,当前,DNN也已经被应用到多种产品之中。

然而,DNN计算所需的成本非常高,并且在通常情况下,DNN的执行需要基于硬件加速的大量执行环境设置进程。因此,要在像笔记本电脑、智能手机这样的终端用户设备上执行DNN并不十分现实。

过去解决这些问题的方法是云计算。而现在,东京大学机器智能实验室(MIL)开发的WebDNN又提出了一条新的途径。

WebDNN是什么?

WebDNN是一种开源软件框架,用于在浏览器上执行DNN的预训练模型。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

WebDNN包含两种模型:图形转译器,用于将训练过的模型转译并优化成能够在浏览器上执行的格式;以及描述符运行器,用于在浏览器上执行转换过的模型。

图形转译器是一种脱机模型,通过python(3.6版本)实现。它会输出包含JavaScript和二进制权数据的“图形转译器”文件。只有应用开发者需要运行这一模型。

描述符运行器则是一种在线模型,用于在终端用户的浏览器上运行图像转译器,通过JavaScript实现。应用开发者需要使用程序库所提供的API来对模型进行输入并显示输出结果。

特性

WebDNN主要有以下三种关键特性:

免安装

WebDNN在浏览器上执行DNN模型。通常情况下,每个终端用户的设备上都应该已经安装好了浏览器,同时用户会对它非常熟悉。因此,DNN应用的产出会变得更为容易,不会像原生应用安装那么麻烦。

目前市面上存在着几种主流的浏览器,并且它们都有着能够用于加速的不同特性。在每一种浏览器上,WebDNN都有几种能使DNN模型执行进程速度最大化的策略。

非开销接口

JavaScript是一种在浏览器上运行的标准编程语言,它通过解释器来执行。因此,它需要一定的计算开销,也无法完全发挥CPU的性能;在GPU上,也有同样的问题。

现在的浏览器都支持WebGL,一种能够实现GPU使用的JavaScript API。然而,这个API是为图形处理而设计,并不适合进行通用计算;除此之外,用WebGL进行通用计算还会增加计算开销。

WebDNN使用了新一代的JavaScript API——包括用于GPU执行的WebGPU,以及用于CPU执行的WebAssembly。这些API能够帮助充分发挥GPU和CPU的能力。

针对推理阶段的专门优化

为了实现更快的执行过程,对DNN模型的计算图进行优化非常重要。DNN的执行包括两个阶段:训练阶段和推理阶段,并且它们需要不同的优化策略。WebDNN只着眼于在终端用户设备上执行的推理阶段并支持激进优化。这种优化管道能够被应用于不同DNN框架所训练的模型,不需要编辑训练代码。

兼容浏览器平台

640?wx_fmt=png&wxfrom=5&wx_lazy=1

640?wx_fmt=png&wxfrom=5&wx_lazy=1

 下方数字为最低版本要求。

通过WebGPU、WebAssembly和Fallback后端,WebDNN能够在所有主流浏览器上运行。

其中,WebGPU后端是三种途径中最快的,但目前该API只支持Safari技术预览版;WebAssembly后端速度次之,能够兼容大部分主流浏览器;Fallback后端则只能进行向下兼容,且速度并不那么快。

在Safari技术预览版中,默认禁用WebGPU API。启用方法是在菜单中点击:“Develop” > “Experimental Features” > “WebGPU”

效果

处理时间——与Keras.js对比

(量子位注:Keras.js是GitHub上的一个开源项目,在GPU的支持下,能够用于在浏览器上运行Keras模型。)

测试环境:

  • Mac Book Pro ,2015年初版本
  • macOS 10.12.4 Sierra
  • Intel Core i5 2.7 GHz CPU
  • 16GB内存
  • Intel Iris Graphics 6100 GPU
  • Safari技术预览,版本30

模型:VGG16, Inception-v3, ResNet50

输入形状:Inception-v3——(1, 299, 299, 3),其它——(1, 224, 224, 3)

640?wx_fmt=png&wxfrom=5&wx_lazy=1

 纵轴为每张图像消耗的时间,单位毫秒。

结果显示,搭载了后端WebGPU的WebDNN速度明显快于Keras.sj,而搭载了后端WebAssembly的WebDNN,速度则稍快于搭载了后端GPU的Keras.sj。

在每一个DNN模型及后端,WebDNN在速度上都比Keras.sj更快。当对图形转译器进行优化后,WebDNN的速度将得到进一步提升。

Demo

WebDNN还有两个官方的Demo。

Demo 1:图像风格迁移模型

640?wx_fmt=png&wxfrom=5&wx_lazy=1

 浮世绘风格的猎豹。

Demo 2:ResNet50图像识别模型

640?wx_fmt=png&wxfrom=5&wx_lazy=1

 可能训练得不太好,海豚识别成了大白鲨……

以上两个示例,其预训练模型的执行都是通过WebDNN在浏览器上完成的。

量子位尝试了一下风格迁移的Demo,特别邀请阿凡提老师作为出镜测试嘉宾,结果有点尴尬,如下图所示:

640?wx_fmt=png&wxfrom=5&wx_lazy=1

我们用的也是Macbook,想测试的同学,可以直接访问这个网址:

相关地址

GitHub地址:

document:

官网(有demo):

还有一个插曲:量子位曾经试图寻找该实验室的官网,发现一个类似的页面,不过这个页面嘛……我们截图如下:

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

【完】

本文作者:唐旭
原文发布时间: 2017-06-05

转载地址:http://bozfo.baihongyu.com/

你可能感兴趣的文章
眠眠interview Question
查看>>
RPC-client异步收发核心细节?
查看>>
#define WIN32_LEAN_AND_MEAN 的作用
查看>>
仿余额宝数字跳动效果 TextCounter
查看>>
你必须知道的.net学习总结
查看>>
Axure8.0 网页 or App 鼠标滚动效果
查看>>
大家好,新年快乐。
查看>>
Android学习路线
查看>>
Linux下的redis的持久化,主从同步及哨兵
查看>>
在相同的主机上创建一个duplicate数据库
查看>>
Date15
查看>>
从Date类型转为中文字符串
查看>>
基于multisim的fm调制解调_苹果开始自研蜂窝网调制解调器 最快2024年能用上?
查看>>
mupdf不支持x64_Window权限维持(七):安全支持提供者
查看>>
labview如何弹出提示窗口_LabVIEW开发者必读的问答汇总,搞定疑难杂症全靠它了!...
查看>>
hikariconfig mysql_HikariConfig配置解析
查看>>
mysql批量数据多次查询数据库_mysql数据库批量操作
查看>>
jquery 乱码 传参_jquery获取URL中参数解决中文乱码问题的两种方法
查看>>
JDBC_MySQL_jdbc连接mysql_MySQL
查看>>
mysql cte的好处_Mysql 8 重要新特性 - CTE 通用表表达式
查看>>